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Abstract 
The last five years have seen a large increase in the use 
of cross validation in the refinement of macromolecular 
structures using X-ray data. In this technique a test set of 
reflections is set aside from the working set and the 
progress of the refinement is monitored by the 
calculation of a free R factor which is based only on 
the excluded reflections. This paper gives estimates for 
the ratio of the free R factor to the R factor calculated 
from the working set for both unrestrained and 
restrained refinement. It is assumed that both the 
X-ray and restraint observations have been weighted 
correctly and that there is no correlation of errors 
between the test and working sets. It is also shown that 
the least-squares weights that minimize the variances of 
the refined parameters, also approximately minimize the 
free R factor. The estimated free R-factor ratios are 
compared with those reported for structures in the 
Protein Data Bank. 

1. Introduction 
One of the problems in macromolecular crystallography 
is that the crystallographer cannot always be sure that an 
apparently fully refined structure is free from large 
systematic errors. The agreement between the model of 
the molecular structure and the X-ray diffraction data 
from which it has been derived is measured by the 
crystallographic R factor, but it is well known that 
structures with acceptable values of this parameter can 
have significant errors (Br~ind6n & Jones, 1990; Kley- 
wegt & Jones, 1995a). The R factor is susceptible to 
manipulation by leaving out weak data or by overfitting 
the data with too many parameters and so is not a 
completely reliable guide to accuracy. In small-molecule 
crystallography, where the number of X-ray intensity 
observations usually exceeds the number of parameters 
in the model by at least an order of magnitude, the R 
factor is a more sure guide to both accuracy and preci- 
sion. 

In 1992 Brtinger introduced the idea of an  Rfree 

(Brtinger, 1992, 1993), based on the standard statistical 
modelling technique of jack-knifing or cross-validatory 

residuals (McCullagh & Nelder, 1983). The Rfree is the 
same as the conventional R factor, but based on a test 
set consisting of a small percentage (usually ~5-10%) of 
reflections excluded from a structure refinement. The 
remaining reflections included in the refinement are 
known as the working set. The Rfree value, unlike the R 
factor, cannot be driven down by refining a false model 
because the reflections on which it is based are excluded 
from this process. Rfree is only expected to decrease 
during the course of a successful refinement. Conse- 
quently, a high value of this statistic and a concomitant 
low value of R may indicate an inaccurate model. The 
procedure assumes that the reflections removed for the 
cross-validation test have been randomly selected and 
have errors uncorrelated with those that remain in the 
set used in the refinement. This assumption may be 
partly invalidated by the presence of non-crystal- 
lographic symmetry. Ideally, the refinement should be 
repeated several times, removing non-overlapping sets 
of reflections each time. 

The Rfree is highly correlated with the phase accuracy 
of the atomic model (Brfinger, 1992, 1993) and can 
detect various types of errors in the structure including 
phase errors and partial mistracing of the structure. It 
has also been used in evaluating different refinement 
protocols, such as the optimization of the weights used 
during refinement. It is particularly useful in preventing 
the overfitting of data (Kleywegt & Brfinger, 1996). 

Kleywegt & Jones (1995a,b) have shown that with 
low-resolution data it is possible to completely mistrace 
a structure, deliberately tracing it backwards through 
the density, and still achieve an acceptable R factor. The 
Rfree, on the other hand, could not be duped so easily, 
and remained at a high value, close to that expected for a 
random set of scatterers, throughout the refinement. 

The use of Rfree is thus a valuable guide to the process 
of refinement, particularly for low-resolution data, and 
its use and publication are widely encouraged. A recent 
review (Kleywegt & Brtinger, 1996) indicated that the 
use of the measure is becoming more widespread with it 
being reported in 44% of articles describing macro- 
molecular X-ray structures. 

However, the usefulness of Rfree is limited by the fact 
that what is an 'acceptable' value is often not evident. 
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A superscript T denotes a matrix transpose. 

Scalars 

f 
m 
n 

P 
r 

wi 
ai 
mi "~ [fobs[/- G[fcalc[i 
D 

Oinc 
D free 
Orest 
tel 
G 
Na 

R=~_,llfobsli--alfcalclil 
Ifobsli 

eG--[~-"wi(If°bsli--alfcalcli)21l/e~wilfobsl~ 

Rinc .& RGinc 
Rfree d~ RGfre e 

Table 1. Definitions o f  symbols 

The number of structure amplitude observations included in the refinement (the working set) 
The number of parameters being refined 
The number of observations, including any restraints, in the refinement 
The number of observations excluded from refinement (the test set) 
The number of restraints included in the refinement (r = n - f) 
The weight of the ith observation 
The standard deviation of the ith observation 
An X-ray residual 
The weighted refinement residual 
The contribution to D from the working set of f reflections 
D based on a test set of p excluded reflections 
The contribution to D from the r restraints ( D r e s t  = D - -  D i n c )  

The structure amplitude 
The least-squares X-ray scale factor 
The number of atoms being refined 

The standard R factor 

The generalized R factor 

R factors based on all reflections in the working set 
R factors based on a test set of p excluded reflections 

Column matrices 

ai 
bi 
f 

g 

i 
Af~ee = g -  ~ 

The ith row of A 
The ith row of B 
The n observations employed in the refinement (structure amplitudes and restraints) 
The least-squares estimate of f calculated at the convergence of the refinement 
The p excluded observations 
The least-squares estimate of g calculated from i at the convergence of the refinement 
The least-squares estimate of the rn parameters 
The least-squares residual associated with the excluded observations 

Rectangular matrices 
A 
B 

D free 
I~l 

S 

W 
W free 

The least-squares design matrix of derivatives of order n x m 
The p x m matrix analogous to A but involving the excluded observations 

= (AfreeAfree)) The p x p variance-covariance matrix of the excluded residuals (Dfree T 
The m x m normal matrix given by ArWA 
The p x n matrix given by BH-aATW 
The n x n symmetric weight matrix and W -1 is the VCM (variance-covariance matrix) of the included 

observations. This matrix reflects the random experimental and model errors 
The p x p symmetric weight matrix of g and Wff~ae is the VCM of the excluded observations 

One would expect Rfree to always be higher than R even The need for more understanding of the behaviour of 
when there are no systematic errors in the model Rfree was highlighted by Dodson et al. (1996). In spite of 
structure, but is not clear how much higher if should be. the enthusiasm for its use, actual applications of Rfree 

At present we merely have a number of rules of thumb 
(Kleywegt & Brtinger, 1996). 

Cruickshank has estimated that the expected value of 
the free R factor (EFRF) is given by 

EFRF -- [Nobs/(Nob s - Npar)]l/2R, 

where Nob s is the number of observations, Npa r is the 
number of parameters, and R is the conventional R 
factor (Dodson et al., 1996). Bacchi et al. (1996) use this 
expression in an extension of the self-validation 
Hamilton test to assess the significance of any observed 
drop in Rfree during refinement. 

have remained somewhat subjective without an under- 
standing of its statistical basis. For example, if non- 
crystallographic symmetry (NCS) constraints are 
relaxed during a structure refinement, how much should 
Rfree rise during subsequent refinement if the restrained 
model is correct? Without understanding how Rfree 

varies as a function of the number of restraints and/or 
number of parameters it is only possible to make rather 
subjective judgements. 

This paper begins to answer these questions by 
deriving the expected value of the free residual from 
which estimates of both Rfree and the ratio of Rfree to R 
are calculated. 
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2. Theory 
2.1. Error assumptions 

The expected or estimated values of residuals and R 
factors will be derived on the assumption that the 
weights used in the structure refinement correctly reflect 
the errors which include not only experimental errors in 
measuring X-ray intensities but also errors in the func- 
tional form of the structure-factor model which produce 
random and uncorrelated perturbation in the residuals. 
These model errors, which may arise from complicated 
atomic disorder, are an important source of random 
error in protein structures and are the reason why R 
factors of refined macromolecular structures are usually 
higher than their small-molecule counterparts. It is 
assumed in the derivation of the statistics in this paper 
that these random errors have been correctly accounted 
for in the weighting of the X-ray data and of any 
restraints in the refinement process. 

Some model errors, such as the absence of a bulk 
solvent correction, lead to correlated model errors in 
reciprocal space. In the theory to be presented in this 
paper, such correlation could be accommodated if 
refinement took place with a weight matrix with off- 
diagonal terms but in practice computational difficul- 
ties preclude the use of such matrices in macro- 
molecular refinement. All expressions derived in this 
paper that use a diagonal weight matrix assume that 
correlated errors are absent. Model errors such as 
missing or misplaced atoms are similarly assumed to 
be absent. On the other hand, no assumptions are 
made about the completeness or otherwise of the 
reflection data set. 

In order that the model errors in the free reflections 
are uncorrelated with those reflections used in refine- 
ment, the reflections in one set must not be related to 
those in the other set by crystallographic and non- 
crystallographic symmetry. No reflection in the free set 
must be related to one in the main set by pseudosym- 
metry. Care is needed when selecting reflections from 
data sets where Bijvoet pairs have been kept separate. 
Another case arises when there are domains or mole- 
cules in the asymmetric unit related by a non-crystal- 
lographic axis which is along a rational direction in the 
crystal lattice (e.g. the pseudo-dyads in rhombohedral 
insulin). 

2.2. Definitions 

For convenience the definitions of symbols commonly 
used in this paper and its appendices are given in Table 1. 

2.3. The expected value of  the free residual 

The algebra for the derivation of the expected value 
of the free residual ispresented in Appendix A. There it 
is first shown that the second moment matrix of residuals 
corresponding to a test set of observations excluded 

from least-squares refinement is equal to the sum of the 
variance--covariance matrix (VCM) of the omitted 
observations and the VCM of the corresponding quan- 
tities calculated from the parameter estimates at the 
convergence of a refinement. The expected value of the 
sum of squared residuals associated with the excluded 
observations is then obtained by taking matrix traces. 

The theory then draws on results from an earlier 
paper (Tickle et al., 1998) where it is shown that when 
the weighting is on an absolute scale, the expected value 
of the sum of a subset of s weighted residuals at the 
convergence of a least-squares refinement is, 

(~i=1 wim2)--S-- i=1 ~ wiaTn-lai' (1) 

where the angled brackets denote statistical expecta- 
tion. 

When the above summation is over all n observations 
(reflections and restraints), 

and hence 

w i a ~ H - l a i  = m, (2) i=1 

(i= lWi  i) --n m 

In Appendix A equation (21) shows that the expected 
value of the residual associated with p excluded obser- 
vations in the test set, is given by, 

(Ofree)--( ~wi(IF°bsli - 
p 

= p + ~ w i b T H - l b i  . i=l 
(3) 

It should be noted that the derivation of this equation 
does not assume that the test set has been randomly 
selected from reciprocal space. 

We now consider the f structure-amplitude observa- 
tions included in the refinement (the working set). From' 
equation (1) the expected value of the residual asso- 
ciated with these observations at convergence is given 
by 

(Dinc)-(i=~wi(lFobsli-GlFca,cl¢)2 I 
f 

-- f - ~ w i a T H - l a i  . i=1 
(4)  

The similarities between equations (3) and (4) will be 
noted. In the linear approximation, both expressions for 
the expected value are independent of the observations 
(structure amplitudes and restraints). 

Using these results it is possible to obtain estimates of 
the ratio of Rfree to R for models with only random 
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uncorrelated errors. This Rfree ratio is estimated first for 
unrestrained refinement and then for refinements with 
geometrical restraints. These Rfree ratios are the starting 
point for understanding Rfree ratios where systematic 
errors are present. 

2.4. Random exclusion of observations in unrestrained 
refinement 

The calculation of the expected values of the residuals 
using equations (3) and (4) is a computationally inten- 
sive task in macromolecular refinement, involving the 
inversion of the normal matrix H. In general we need 
statistics which are more readily available during the 
refinement process. 

We first consider the case of unrestrained refinement. 
In this case f = n and from equations (2) and (4), 

and, 

f 
Y~ wiaf H-lai -- m, (5) 
i=1 

(Oinc) - -  f - -  m .  (6)  

Equation (3) gives the expected value of the free resi- 
dual based on any given subset of p observations. In 
order to derive simpler expressions, we must now 
assume that the test reflections have been randomly 
chosen from reciprocal space. In this case when p is large 
we assume that the sums of the quadratic forms are 
approximately proportional to the number  of observa- 
tions involved. Thus, 

p f 
Y~. wibri U-lbi ~" (P/f) E wiarH-lai • (7) 
i=1 i=1 

Hence, from equations (3), (5) and (7), 

(Ofree)  ~ '  (p/f)O e "t" m). (8 )  

From equations (6) and (8) the estimated ratio of the 
residuals for the case of random uncorrelated errors is 

Ofree p f f  -~ m )  
--~ (9) 

Din c f O  e - -  m ) "  

Unlike equations (3) and (4), the above equation is 
independent  of the scale of the weights. 

2.5. The expected value of RGfre e in unrestrained 
refinement 

The expected values of the residuals derived in the 
previous section may be used to give estimated values of 
the generalized R factor, Re, defined by 

Raa _ E w i ( J F o b s l i  - GlF~alc[i) 2 

F~ w, IFou~l/~ 
2 We define RGfre e a s  R 2 based on p excluded reflections. 

If there are only random and uncorrelated errors then 
2 the numerator  of RGfre e may be approximated by (Dfree) 

and using equation (8) we can write 

2 p ( f  + m) (10) 
gGfre  e ' ~  p 

f E wi[f obs[~ 
i=1 

2 We define Rai.c as R 2 based on all f included reflections 
and if the weights have been scaled so that the residual 
in the numerator  is equal to its expected value then 

2 f - m  (11) 
R G i n c -  f 

Y~ wilFobs[ 2 
i=1 

2.6. The ratio of  RGfre e to  R G in unrestrained refinement 

From equations (9), (10) and (11) we have 

2 fDfree  f + m  RGfree ,~ 
2 - -  - -  " 

R Ginc P D i n c  f -- m 

Thus, we may write the ratio of the generalized R factors 
for the case of random uncorrelated errors as 

eGfree,.,~~-'~m) 1/2 
RGinc - -  __ . (12) 

These results give the expected ratio of the generalized 
R factor of the test set to that of the working set at the 
convergence of an unrestrained refinement in the case 
where there are only random uncorrelated errors which 
are correctly reflected i n t h e  weights employed. The 
results depend only on the number  of reflections and the 
number  of parameters. 

2.7. Re#me and the RGfre e ratio in restrained refinement 

In a restrained refinement, such as is typical in 
macromolecular crystallography, the ratios derived in 
the previous two sections would only be applicable if 
Rcfree were calculated from a random selection of resi- 
duals including both structure-amplitude observations 
and restraints. Since R factors are traditionally only 
based on structure amplitudes, the estimation of Rcfree 
ratios for restrained refinement requires further 
analysis. 

The number  of observations this time is n and f o f  
these are structure amplitudes, the balance consisting of 
r geometrical, thermal or other restraints which make a 
contribution Drest to the minimized residual at conver- 
gence. From equation (1) we have 

(Drest } - -  r -  k w i a T H - l a i ,  (13) 
i=1 

where the summation is taken over the restraint obser- 
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Table 2. Estimates of RGfre e and RGfre e ratios for converged least-squares structure refinements conducted with various 
constraint regimes 

It is assumed in each case that experimental and model errors are random and uncorrelated and that the weights correctly reflect the model and 
experimental errors. The last column gives expressions for a refinement where there are r hard constraints, reducing the number of parameters to 
m - r. The constrained expressions are only valid if imposition of the constraints does not invalidate the error assumptions given above. 

RGfree 

RGfree 
Ra 

No restraints Restraints Constraints 

p ( f  + m) p[f  + (m - r + Drest)] pO e ~ m - r) p ------ 
f i=lk wilFobsl~ f i--lk wi[Fobs[ 2 f ~ wilFobs[ 2 

{; }1/2 {f ~est) } 1; } + m + (m - r  + Drest ) 1/2 -1 I- (m - r) 1/2 

- m - -  ( m  - r + - ( m  - r )  

vations. Using this equation and equation (2) the 
summation over the structure-amplitude observations 
can be written 

f 
Z wiaTH-lai--m- ~ wiaTH-lai 
i=1 i=1 

= m - r + (Orest) . (14) 

This result and equations (3) and (7) give the following 
approximation for (Dfree) 

(Dfree) '~  (p/ f ) ( f  + m - r + Orest ). 

Similarly an approximation to (Dine) can be derived 
from equations (4), (7) and (14), 

y 
(Dine) -- f -- Z wiaTH-lai 

i=1 

f -- (m -- r -k- O rest ) 

Hence, an estimate of RGfre e at the convergence of a 
correctly weighted restrained refinement with only 
random uncorrelated errors is 

1/2 

p[f + (m -- r + Orest)] 
RGfre e '~  - -~  . . . . .  . 

f ~ wilFobs 
i=1 

The estimated ratio of the free residual to the included 
residual is given by, 

Dfree ~_ + (m - - r  + Ores t ) l  

Din e ' ~  ( P / f ) _ _ -  ( m - 7+O r es t ) J '  

and hence, 

RGfre e ,-~ F f  - -71-(m - r + Ores t ) l  1/2 

RGine I f  (m - r + Dres t ) ]  " 

However, Rfree has also been used to optimize the 
weighting of geometrical or temperature-factor terms in 
refinement by adjusting the weights so as to minimize 
Rfree (Brtinger, 1992, 1993). It is, therefore, of interest to 
enquire how Rfree responds to variations in weighting. 

Appendix C shows that the weights W which correctly 
reflect experimental and model errors, minimize the 
variance of both the refined parameters :~, and also the 
expected value of the sum of the squares of the 
unweighted residuals in the test set. Hence, the choice of 
these weights approximately minimizes Rfree. One 
method of estimating such weights has been described 
by Tickle et al. (1998). 

2.9. The use of standard R factors 

The R-factor expressions used so far in this paper 
have been based on the generaliZed R factor, Re. 
However, identical expressions can be derived for the 
estimated values of the standard free R factor, Rfree, and 
the standard Rfree ratio. For example, in Appendix B the 
following estimate of the Rfree ratio in unrestrained 
refinement is derived which is based on standard R 
factors, 

Rfree ~, f + m/2 o 
Rin c f - m/2 

The numerator and denominator in the above equation 
are first-order binomial approximations to square roots 
and, therefore, another estimate of the standard Rf~ee 
ratio is 

Rfree l" f m'~ a/2 

Rinc V m / -  

The right-hand side is now the same as for the RGfre e 
(15) ratio [equation (12)]. These expressions may be 

compared with the estimate used by Bacchi et al. (1996) 
which in our notation is 

2.8. Minimum variance weights minimize Rfree 
The expected values derived above are only applic- 

able for correctly weighted least-squares refinements. 

Rfree'~ ( f  f ) 1 / 2 R i n  e - m  " 

The derivation of simple estimates for the standard 
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rearranging the terms in equation (16) we arrive at 

where 
z -- ax, 

z -- (y2 _ 1)/(y2 + 1). 

Fig. 2 shows a plot of z against x where the points are 
colour coded as in Fig. 1. The coloured straight lines in 
Fig. 2 are least,squares lines fitted to the data points in 
the particular resolution range represented by points 
of the same colour. For example, the pink triangular 
points represent data between 3 and 4 A resolution and 
the pink line is the least-squares line through the pink 
triangular points. The pecked black lines emanating 
from the origin in Fig. 2 are plots of z - ax for the same 
values of a as shown in Fig. 1 

We requested information from some of the authors 
whose structures were outliers in Fig. 2. It became 
apparent that very unusual Rfree ratios are normally not 
the result of careful refinement protocols. The coloured 
lines were, therefore, plotted ignoring the points in the 
darker regions outside the sector bounded by the black 
lines of slopes 0.5 and 10. The choice of these slopes as 
cutoffs was somewhat arbitrary but the removal of these 
outliers caused the coloured lines to pass nearer to the 
origin. 

The plots of z = ax represent refinement regimes with 
different numbers of parameters per atom. The gradi- 
ents of the lines (a) increase with the number of para- 
meters per atom. In the absence of relevant information 
in the Data Bank, it was assumed that in restrained 
refinements, r = 2.5Na and Drest = I"/5. These estimates 
ignore temperature-factor restraints (if any) because our 
survey of the latter revealed widely different restraint 
protocols. Using these values, for restrained refinements 

a = (m/Na)  - 2. 

It can be seen that the z = 2x line (isotropic temperature 
factors) passes through the constellations of orange 
crosses and pink triangular points, representing struc- 
tures between 2.5 and 1.5 A resolution and is close to the 
green pecked line (2.5-2.0 * data). Similarly the z = x 
line (overall temperature factor) !ies close to the pink 
line which is fitted to the 4-3 A data. Even in the 
absence of details of restraint procedures, the z = ax 
lines can be seen to pass through areas of the plot where 
the particular refinement regime is most relevant. The 
large spread of values about the straight lines is unlikely 
to be solely a statistical effect and may well say some- 
thing about the quality of the refinements. 

Comparison of the lines z = 2x and z = 4x, which differ 
only in respect of restraints, shows how restraints lower 
the Rfree ratio. Non-crystallographic symmetry (NCS, see 
Introduction) might give rise to lower than predicted 
Rfree ratios. However, a check on structures in our plots 
which exhibit NCS did not reveal any obvious systematic 
effects. 

4. Conclusions 

Values of Rfree are affected by all types of error in the 
model and the data. The Rfree ratio, however, is inde- 
pendent of random errors and provides a statistic which 
can be compared with its theoretically estimated value 
and used to detect systematic model or weighting errors 
at the convergence of least-squares refinement. 
However, achievement of a theoretical value of the ratio 
is not by itself proof of the correctness of the model or of 
the quality of the refinement. Nevertheless is would still 
be helpful if refinement programs printed out the 
calculated and estimated value of the Rfree ratio using 
the expressions shown in Table 2. This would encourage 
a better understanding of Rfree than exists at present. 
Calculation of the observed and theoretical values of 
these ratios has already been implemented in the 
refinement program R E S T R A I N  (Driessen et al., 1989). 

At low resolution the number of data excluded for 
cross validation may be small and in these circumstances 
the precision of free residuals is important. This will be 
the subject of part II of this work. 

A P P E N D I X  A 
A1. Statistical properties o f  free residuals. Derivation o f  
the expected value o f  the free residual 

Here we derive the statistical expectation of the free 
residual (Dfree), at the convergence of a least-squares 
refinement. The normal equations of least-squares 
refinement at convergence can be written 

0 -- (ArWA) -1ATW(f - f) 

= H-1ATW( f - f). 

If the errors in the observations and the model are not 
too large then a truncated Taylor expansion may be 
written about the expected values of the parameter 
vector (x) and the observation vector (f). 

i -  (x) -- H - a A r W ( f -  (f}). 

The structure amplitudes and target distances corre- 
sponding to the excluded observations in a test set can 
be expressed in terms of the parameter estimates by the 
truncated Taylor expansion, 

- (g) -- n(i- (1)) 

= n o  -1ArW(f  - (f)) 

= S ( f -  (f)). (17) 

Thus, the column of residuals of the excluded observa- 
tions is given by 

Af~ee - g - i  
= g -  (g) - S ( f -  (f)). 

Assuming that the errors in f and g are uncorrelated, the 
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VCM of the residuals associated with the excluded 
T 

observations Ofree -- (AfreeAfree) is given by 

Dfre e __ ( ( g _  (g) ) (g_  <g))T) 

+ (s(f- <r>)(f- 
- I  S T ~--- Wfree  -3 I- S W  - 1  . ( 1 8 )  

Thus, Ofree is equal to the sum of the VCM of the 
excluded observations and the VCM of the corre- 
sponding quantities calculated from the refined 
parameters. From equation (18) it follows that, 

DfreeWfree -- Ip -t- sw- lsTWfree ,  (19) 

where Ip is a unit matrix of order p. Using the fact that 

H -- A r W A ,  

and noting that the trace of a product of matrices is 
invariant under a cyclic permutation of the order of 
matrix multiplication, we take the trace of both sides of 
equation (19) to give 

tr(OfreeWfree ) - - p  + tr(SW-1STWfree) 

= p + tr(BH -1ArWAH-a  BrWfree ) 

= p -q- t r (WfreeBn-lBT).  (20) 

errors will lead to test-set residuals with larger 
variance-covariance matrices. 

APPENDIX B 
B1. The ratio o f  Rfree to R in unrestrained refinement 

The derivations in the body of this paper have been 
given in terms of the generalized R factor. In this 
appendix we derive the expected values of residuals 
expressed as the sum of unweighted absolute differ- 
ences. Hence, we obtain an estimate of the Rfree ratio 
expressed in terms of the standard R factor which is 
defined as  

R -- 2 I IFobsli- GlF~alclil 

IFobsli 

The variance of an included residual 
I IFobsl/- GIFcalclil at the convergence of a refinement 
(see Appendix  B in Tickle et aL, 1998) can be written 
as 

If the p excluded observations are structure amplitudes 
and we assume that the weight matrix is diagonal, then 
equation (20) can be written as 

(Ofree)--(i=~lWi(lfobsli--alfcalcli) 2> 
P 

= p + ~ wibTH-lb  i (21) 
i=1 

where the angle brackets denote statistical expectation, 
(Ofree) is the expected value of the residual associated 
with the given p excluded observations and h i  is the ith 
row of B. The expected value of a single weighted 
excluded residual in the summation is obtained by 
taking a single diagonal term from equation (19) which 
gives 

<wi(lFobsl i -- GIFcalcli) 2) -- 1 + wibTn- lb i  . 

Two notable assumptions have been made in the 
above analysis. First, it has been assumed that the test- 
set residuals are uncorrelated with those in the working 
set. Equation (18) is invalid if this assumption is not true. 

Second, it is assumed that the refinement has used a 
weight matrix W which correctly reflects the experi- 
mental and model errors. Equation (21) is invalid if this 
assumption is not true. When a diagonal weight matrix is 
used, as is almost always the case in practice, correlated 
errors in reciprocal space will not be correc t ly  
represented. In Appendix  C it is shown that the use of 
weight matrices which do not correctly account for the 

< ( I F o b s l i -  GIFca ,c l i )2>  - -  o'~ - a~H-la, .  

To make further progress we need to assume a 
distribution for each residual IFobsl i --GlFcalcli. If a 
normal distribution is assumed, we can write 

(]lFobsl i - GlFcalcli )--(2/Tr)((lFobsl i -- GlFcalcli)2} 1/2, 
(22) 

and hence, 

< > i 
L [Ifobsl i -  alfcalclil - - ( 2 / / r r ) E ( 4  -- Itl/TH-111i) • 
i=1 i=1 

The square root in the above summation may be 
expanded binomially to the first order giving 

G calc/I) 
f 

(2/70 ~ o-/(1 - wiaTin-lai/2).  
i=1 

We now assume that ai is the same for all observations 
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so that we can write 
P"-- LH-1ArW,  (27) 

f 
_ (2~/~r) ~ ( 1  - wa2I-I-~ai/2). 

i=1 

Using equation (5) to simplify the right-hand side, we 
can write 

< ~] ]fObs 1 i i = 1  -- aIfcalc Ii 1> "" 20"(f --3./. m/2) (23) 

By analogous reasoning the sum over the p excluded 
reflections can be approximated as 

-~[ [Fobs]i- Gl<a,cli]> ~ 2crp(f + m/2) 
i=1 Yrf (24) 

We have now derived approximations for the numera- 
tors of Rinc a n d  Rfree. Their denominators are, on 
average, proportional to the number of reflections in the 
respective summations. Hence, dividing equation (24) by 
equation (23) and multiplying by f/p we have 

Rfree , ~  f + m/2 
Rin c f -  m/2 

A P P E N D I X  C 
C1. Minimum variance weights minimize the expected 
value of  Rfree : ,~ 

First we show that the least-squares refinement using 
a weight matrix W which is the inverse of the VCM of 
the observations, minimizes the VCM's of both the 
refined parameters ~ and the free residuals g - ~. 

Consider a function t which is a function of the refined 
least-squares parameters which is linear to within a first- 
order Taylor approximation, 

~ t -  L~X. 

Now consider two column matrices fi and ~, defined 
below, which are both unbiased estimates of t. 

f i -  (fi) -- P(f (f)) (25) 

- (~) -- Q ( f -  (f)), (26) 

where, 

Q - I J-I; -~ArU.  (28) 

U is any weight matrix and H u -  A rUA. From 
equations (27) and (28) and from the definitions of H 
and Hu, 

P A  -- QA.  (29) 

We wish to showtha t  the VCM of fi is smaller than 
that of ~. Because fi and ¢e are unbiased estimators, 
(fi) -- (~) and thus the VCM of ~ can be expressed as 

= ( ( a -  <a> + ~ a)(a  - <a> + ~ - a) ~) 

- ((a - <a>)(a - <a>) ~) + ((~ - a)(~ - a) ~) 

+ ((a - <a>)(~ a) ~) + ((~ - a)(a  - <a>)~). (30) 

The last two terms of the above equation are the 
transpose of each other and are each zero matrices as 
shown by the following analysis which uses equations 
(25), (26), (27) and (29). 

((.~_ fi)(fi _ (fi))r) = ((Q _ p ) ( f _  ( f ) ) ( f_  (f))rpr)  

= (Q - P ) W  - 1  W A H  -1 Lr 

= (Q - p )AH-aL  r 

= 0 .  

Hence from equation (30), 

( ( ~ -  <~>)(~-  < ~ > ) ~ ) = / ( a -  < a / ) ( a -  <a>) ~) 

+ ((~ - a)(~ - a)~). 

Since the VCM's are positive definite 

Thus, the VCM of fi which is calculated with W is less 
than the VCM of fi which is calculated with another 
weight matrix U. Making the substitution fi = :~ and 
setting L to a unit matrix, this analysis shows that by 
using the weight matrix W, we minimize the variance of 
~,. Substituting fi = ~and  L = B, the same analysis shows 
that W also minimizes the VCM of ~. From equation (18) 
the VCM of the residuals associated with the excluded 
observations Ofree is the sum of the constant matrix Wfr-e~e 
and the VCM of ~. Hence, Dfree and its trace are also 
minimized by choosing W as the weight matrix. The 
trace of Ofree is the expected value of the unweighted 
sum of squared residuals, 

bs l i -  alfcalcli) 2 , 
"= 

where the summation is taken over the p reflections in 
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t ~ • •  ¸ 

b 

the test set. By using ~ the normal  approximation in 
equation (22) we can say that the sum of absolute 
differences 

and hence Rfree are approximately minimized by 
choosing W as the least-squares weight matrix. 

The authors would like to thank Professor D. W. J. 
Cruickshank FRS for his helpful comments  on this 
paper. 
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